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Abstract Machine Learning Weather Prediction (MLWP) models have recently demonstrated remarkable
potential to rival physics-based Numerical Weather Prediction (NWP) models, offering global weather forecasts
at a fraction of the computational cost. However, thorough evaluations are essential before considering MLWP
models as replacements for NWP models. This study presents a comprehensive evaluation of four leading
MLWP models—GraphCast, PanguWeather, Aurora, and FourCastNet—against observations and three state-
of-the-art NWP models in predicting tropical cyclones (TCs) across all tropical ocean basins. All MLWP
models exhibited strong skill in forecasting TC tracks, achieving an average track error of less than 200 km at a
96-hr forecast lead time. However, they consistently underestimated maximum sustained wind speeds compared
to NWP models and observations. The low bias in TC intensity forecasts by MLWP models is linked to similar
bias in their training data, along with the double penalization effect. MLWP models realistically captured the
absolute vorticity patterns and their advection, demonstrating their ability to represent the dynamics underlying
TC translation. They also captured the low-level convergence and vertical warm core structure of TCs, although
the magnitudes were weaker than observed, highlighting the linkage between dynamical and thermodynamical
processes. The consistency in magnitude between various physical fields in the MLWP models suggests that
they intuitively learn the interrelationships among different physical fields during the evolution of weather
systems, demonstrating their ability to capture complex physical interactions. Among the MLWP models,
Aurora showed superior performance, surpassing GraphCast, PanguWeather, and FourCastNet.

Plain Language Summary Machine Learning (ML) models are revolutionizing global weather
prediction. Physics-based Numerical Weather Prediction (NWP) models run on high-performance computing
systems, requiring hundreds of processors and significant computational resources to generate global weather
forecasts. In contrast, trained ML models produce forecasts in seconds on a single graphical processing unit,
significantly enhancing the potential to predict extreme weather events like tropical cyclones (TCs). While
preliminary studies indicate good skill of ML models in predicting TC tracks, a detailed evaluation of their
performance in forecasting TC tracks, intensity, and underlying dynamics globally has been lacking. In this
study, we comprehensively analyze the skill of four global ML Weather Prediction (MLWP) models in these
aspects and compare them with three NWP models and observations. Our results show that MLWP models
achieve smaller track errors than NWP models but predict weaker TC intensities. Among the MLWP models,
Aurora, which uses a transformer-based architecture and a variety of training data sets, outperformed models
based on a single training data set source. This indicates Aurora's superior ability to represent the dynamics and
thermodynamics of TCs. These findings underscore the potential of ML models in weather prediction, offering
opportunities to improve the accuracy and efficiency of forecasting extreme weather globally.

1. Introduction

Tropical cyclones (TCs) are among the most devastating natural events, presenting significant hazards to coastal
areas due to intense winds, storm surges, and substantial precipitation (Islam et al., 2021; Kantha, 2008; Needham
et al., 2015; Seo & Bakkensen, 2017). Precise forecasting of TC tracks and intensities is crucial for mitigating
their societal and economic impacts (Fanchiotti et al., 2020; Lenzen et al., 2019; Naguib et al., 2022). Ad-
vancements in numerical weather prediction (NWP), data assimilation techniques, and the integration of satellite
observations have significantly improved the precision of TC forecasts. Historically, forecasts were initially
simplistic, based primarily on empirical techniques and climatological data. With a rise in computational capacity
in the mid-20th century, dynamical models began advancement in TC forecasting (Willoughby et al., 2007). Over
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the past two decades, the enhancement of global and regional models has resulted in significant advancements in
track prediction, with errors reduced by about 50% since the 1990s (Cangialosi et al., 2020). The improvement in
track predictions is primarily due to improved NWP model initial conditions as a result of wider satellite coverage
and advanced ensemble forecasting methods (Goerss, 2009). On the other hand, intensity prediction has lagged
behind track forecasts, mainly because of the inadequate representation of many physical processes influencing
storm strength, including ocean interactions, atmospheric conditions, and internal storm dynamics (DeMaria
et al., 2005). Recent developments in high-resolution models, model physics, data assimilation, and the addition
of air-sea interactions have started to enhance the accuracy of intensity forecasts (Alaka Jr et al., 2024; Tallap-
ragada et al., 2014).

In recent years, Machine learning-based Weather Prediction (MLWP) models such as GraphCast, FourCastNet,
and Pangu-Weather have shown significant potential to improve TC and general weather forecasting. Using
massive data sets and advanced deep learning techniques, these models have distinct advantages over traditional
NWP systems. They enable faster computations, achieve high spatial and temporal resolutions, and often match or
outperform conventional models in predicting large-scale global weather phenomena, including TCs (Anirudh
et al., 2025; Hakim & Masanam, 2024). For example, GraphCast uses graph neural networks (GNNs) to effec-
tively capture complex spatial and temporal dependencies, resulting in more accurate weather predictions (Lam
et al., 2023). Similarly, FourCastNet and Pangu-Weather utilize Fourier-based neural networks and transformer-
based architectures to model intricate atmospheric dynamics with impressive accuracy in a few minutes (Bi
et al., 2023; Bonev et al., 2023; Pathak et al., 2022). Despite these advances, significant challenges remain,
particularly in forecasting high-impact weather events. A recent analysis of Storm Ciar4n, a European windstorm,
reveals considerable strengths and weaknesses in their application for operational forecasting. Models such as
GraphCast, FourCast-Net, and Pangu-Weather correctly predicted large-scale synoptic features. However, for
this extratropical cyclone, they failed to capture finer-scale details essential for accurate weather warnings. The
failure in these models included underprediction of maximum wind speeds and a lack of consistency in the warm
core representation (Charlton-Perez et al., 2024). These results show that MLWP models can match or even
outperform traditional NWP systems in predicting large-scale storm structures but cannot resolve small-scale
features. This limitation arises from several factors, including the quality, diversity, and size of their training
data sets and their inability to incorporate physical constraints into their architectures fully. In addition, their
performance in different ocean basins and under changing climate conditions still requires rigorous validation and
further refinement (Mu et al., 2025; Thuemmel et al., 2023; Wu et al., 2022).

While MLWP models have demonstrated substantial progress in TC prediction, several research gaps remain
unaddressed. First, most existing studies have evaluated these models using a very limited number of cyclone
cases, which restricts drawing broader conclusions from the findings. For instance, Bouallegue et al. (2024)
assessed PanguWeather for TC tracks and intensity and limited their TC analysis to 2018 data, raising concerns
about temporal generalizability. TCs exhibit diverse structures and behaviors depending on their genesis loca-
tion, seasonality, and environmental conditions, necessitating a broader range of case studies, including basin-
wide analyses, for robust assessment (Bhatia et al., 2019; Elsner et al., 2008). Each basin has unique environ-
mental and climatological factors influencing cyclone behavior, and a lack of such studies limits the models'
applicability in diverse conditions (Emanuel, 2013; Roy & Kovordéanyi, 2012). Second, the warm-core thermal
structure, characterized by higher temperatures at the center of the cyclone, is vital for maintaining low pressure
and sustaining the storm's energy (Brueske & Velden, 2003). The development of this warm core is closely
linked to diabatic heating, primarily from latent heat release during convection (Sahu et al., 2024; Vigh &
Schubert, 2009) and the conservation and amplification of vorticity are essential for the intensification of cy-
clones. Diabatic processes, such as heating, contribute to changes in potential vorticity, creating conditions
favorable for tropical cyclogenesis (Raymond, 2012). The interaction between the thermal structure and vorticity
is central to maintaining thermal wind balance, a state necessary for cyclone stability and growth. The tem-
perature adjustments and distribution of vorticity within the vortex core influence the storm's wind structure and
intensity evolution (Peng & Fang, 2021). These essential parameters have been largely overlooked in current
MLWP model evaluations.

This study aims to address critical research gaps in ML-based TC prediction by focusing on underexplored areas
essential for enhancing model reliability and operational applicability. Recognizing the limitations of existing
studies that often rely on a narrow set of cyclone cases, this research emphasizes the need for basin-wide analyses
to capture the diverse structures and behaviors of TCs influenced by unique environmental and climatological
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factors across different genesis locations. Furthermore, it seeks to integrate key physical parameters, including the
warm-core thermal structure and vorticity. By addressing these gaps, the study aims to help advance the
development of robust and versatile Al-driven forecasting models.

2. Data and Methods

This study utilizes four MLWP models on 0.25° X 0.25° horizontal resolution, namely, FourCastNetv2,
GraphCast operational, Aurora pretrained, and Pangu-Weather 6-hr model. All of these models were trained on
extensive reanalysis data sets to generate high-resolution weather forecasts. Specifically, FourCastNetv2 was
trained on data from 1979 to 2015 and validated using data from 2016 to 2017 (Bonev et al., 2023). GraphCast-
operational was pre-trained on data spanning from 1979 to 2017 and fine-tuned with HRES data from 2016 to
2021 (Lam et al., 2023). Pangu-Weather was trained on data from 1979 to 2017 and validated and tested using
2018-2021 data (Bi et al., 2023), and Aurora was pre-trained using 1979 to 2020 data (Bodnar et al., 2024). We
generated forecasts of 50 TCs across five ocean basins using all three MLWP models. The details of the TC cases
and the forecast durations are provided in Tables S1 to S5 in Supporting Information S1.

All four models rely on ERAS reanalysis data with a 0.25° X 0.25° resolution, producing outputs for various
meteorological variables. This study focuses on a subset of these variables, including mean sea level pressure
(MSLP), 10-m wind components (#10, v10), wind components at 500-200 hPa (u, v), geopotential at 850—
200 hPa (z) and temperatures at 1000-200 hPa. ERAS reanalysis hourly data (Hersbach et al., 2020), with the
same resolution, was also used for the comparison of absolute vorticity and temperature anomalies across the
models. The models are computationally efficient and capable of generating 96-hr forecasts in a few minutes on a
single 40 GB NVIDIA A100 GPU.

The TC best-track observational data used in this study were obtained from the IBTrACS v4 data set (Gahtan
et al., 2024; Knapp et al., 2010). This comprehensive data set includes information such as the latitude and
longitude of the TC center, maximum sustained near-surface wind speeds, and central pressure values. For
evaluation purposes, data from 2022 were used, as some models were tested up to 2021. Tracks shorter than four
days were excluded from the analysis, and 10 TC cases were selected per basin, these tracks are randomly selected
for all basins except for the North Indian (NI) basin, which had only 10 available cases. To evaluate the accuracy
of the MLWP models compared to operational TC forecasts, three global NWP models from the THORPEX
Interactive Grand Global Ensemble (TIGGE) project (Bougeault et al., 2010) were chosen. These models,
developed by the National Centers for Environmental Prediction, Global Forecast System (GFS), ECMWF In-
tegrated Forecasting System (IFS), and the United Kingdom Meteorological Office, Unified Model (UM), taken
at horizontal resolution of 0.25° X 0.25° to fairly compare with MLWP models. In TIGGIE, GFS data is archived
in 0.5° x 0.5° IFS data in octahedral reduced Gaussian grid (0640) and UM data in 20 km resolution. The
forecast data from these models are provided at vertical pressure levels of 1,000, 925, 850, 700, 500, 300, 250, and
200 hPa.

The TC tracks are detected following the methodology by Bourdin et al. (2022). The tracking technique is briefly
described below.

1. Candidate Detection
e Local Minima Identification: Potential cyclone centers are identified as local minima in the MSLP field by
comparing each grid point to its eight neighbors.
2. Tracking
o Track Initialization: Tracks are initiated from valid local minima detected in the first timestep, storing
attributes like time, pressure, latitude, and longitude.
e Track Propagation: In subsequent timesteps, new local minima within a 250 km radius of the last known
position are added to active tracks.
o Track Termination: Tracks without updates in later timesteps are finalized and stored.

The tracks of the TCs obtained by applying the above algorithm on the ERAS reanalysis, NWP, and MLWP
forecasts are shown in Figures 1 and 2. Further, we computed divergence (V - V) at 850 hPa, absolute vorticity (#7)
and absolute vorticity advection (A,) in the mid-troposphere (500-200 hPa) to understand the dynamics of TCs
(Chan, 2005).
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Figure 1. Observed (black) and model-predicted (colored) tropical cyclone tracks in the Northern Indian Ocean, Southern
Indian Ocean, and Western North Pacific.
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Where ¢ is the relative vorticity, f is the Coriolis parameter, # and v are the wind components in the zonal and
meridional directions, Q is Earth's angular velocity, ¢ is the latitude.
Additionally, the temperature anomaly was calculated to better understand the storm's intensity, structure, and
thermal characteristics (Durden, 2013). The temperature anomaly is computed as follows: a 10° X 10° grid box is
defined around the TC center and the average temperature within this box is computed for each pressure level. The
mean temperature at each pressure level is then subtracted from the temperature at each grid point within the box
to yield the temperature anomaly.
) T
40°N = Observation —— GraphCast
35°N IFS —— PanguWeather
— GFS —— FourCastNet v2
30°N| — Aurora
25°N
20°N
15°N
10°N
140°W
Figure 2. Same as Figure 1 but for the Eastern Pacific and Atlantic basins.
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Figure 3. Track error (km) for various models across different ocean basins: (a) North Indian, (b) South Indian, (c) Western
North Pacific, (d) Eastern Pacific, and (e) Atlantic Ocean. The x-axis represents lead time (¢ + 0 to ¢ + 96 hr), the line plot
shows the mean, the marker represents the median, and the error bars indicate the interquartile range (80-20 percentile).

3. Results and Discussion

The mean track error increases with forecast lead time across all ocean basins (Figure 3). Aurora, GraphCast,
PanguWeather, and FourCastNet v2 consistently show superior performance, achieving lower errors compared to
the physics-based numerical models like GFS, IFS, and UM. In the North Indian (NI), South Indian (SI) and
Eastern Pacific (EP) regions, the errors increase steadily with relatively small variability, as indicated by narrower
error bars. The Western Pacific (WP) region exhibits the steepest rise in errors and the highest variability, with
GFS, IFS, UM, and GraphCast showing particularly poor performance, while Aurora, PanguWeather, and
FourCastNet v2 maintain a clear advantage. This performance gap is largely attributed to the failure to properly
capture the recurvature of TC Meari, which significantly influenced track prediction. In the EP region, all models
perform relatively closely, but Aurora, GraphCast and PanguWeather retain a slight edge, especially at longer
lead times, while FourCastNet v2 shows competitive results at shorter lead times. In the Atlantic Ocean (AO)
region, a steady increase in error with lead time is observed, with Aurora, PanguWeather and GraphCast again
achieving the best performance, and IFS and GFS showing higher errors, particularly at lead times beyond 24 and
48 hr respectively. Overall, these results highlight the advancements of ML-based models, particularly Pan-
guWeather and GraphCast, in reducing mean track error.

The horizontal movement of TCs is fundamentally governed by vorticity advection, with environmental steering
flows exerting significant influence through their modulation of this process (Y. Wang & Holland, 1996;
Chan, 2005). Thus, we computed the vorticity advection for ERAS and all forecast models. Storm-centered
composites of absolute vorticity and its advection are constructed for the phase of maximum TC intensity for
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Figure 4. Storm-centered composite plots of absolute vorticity advection (10~ s~2, shading) and absolute vorticity

(107 571, contours) averaged in the mid-troposphere (500-200 hPa) over the North Indian Ocean basin for (a) ERAS,

(b) Integrated Forecasting System, (c) Global Forecast System, (d) Unified Model, (e) GraphCast, (f) PanguWeather,

(g) FourCastNet v2, and (h) Aurora. The arrow at the center shows the mean translational speed and magnitude written in bold.

the NI Ocean basin (Figure 4). ERAS, NWP, and MLWP models show typical vorticity patterns associated with
TCs. ERAS and GFS model forecast show strong vorticity advection, while the IFS and UM model show a weak
vorticity advection. The MLWP models captured the pattern of vorticity advection though the magnitudes are
weaker than ERAS and GFS. Among the MLWP models, FourCastNet v2 composite shows weaker vorticity
advection while Aurora shows more stronger advection than other three. Similar results are obtained for other
ocean basins as well (Figures S1-S4 in Supporting Information S1). This analysis indicates that the purely data-
driven MLWP models capture the underpinning physics intuitively.

Figure 5 illustrates the errors in maximum sustained wind speed (MSW) forecasts as a function of forecast lead
time for all ocean basins, comparing NWP and MLWP models. The MSW error is calculated as the difference
between observed and predicted MSW values, with positive errors indicating underestimation and negative errors
indicating overestimation. The MSW and MSLP errors for individual ocean basins as a function of forecast lead
time are shown in Figures S5-S9 in Supporting Information S1. Both NWP and MLWP models exhibit increasing
MSW errors with longer forecast lead times. Regional variations in error magnitude are apparent, with some
regions showing larger forecast discrepancies than others. The GFS model generally demonstrates relatively low
errors at shorter lead times. However, a notable observation is that all MLWP models exhibit larger MSW
prediction errors compared to NWP models. For instance, while the GFS model might show mean errors of
around 5-10 m s™" at # + 72 hr in some regions, the MLWP models display errors as high as 15-18 m s~*. The
underestimation of TC intensities by MLWP models is consistent across all ocean basins.

This underprediction aligns with similar issues reported in capturing the intensity of heat extremes by MLWP
models, as noted by Pasche et al. (2025). One contributing factor to these errors could be inaccuracies in the
training data, as evidenced by the MSW errors in ERAS shown in Figure 5. Another potential factor is the inherent
double penalization issue in ML models caused by the minimization of the mean squared error. Further inves-
tigation is needed to pinpoint the relative contributions of biases in the training data and double penalization to the
large errors in TC intensity predictions by MLWP models.

The spatial structure of the low-level wind speeds associated with TCs predicted by the models provides valuable
insights into the errors in MSW. Storm-centered composites of 10 m wind speeds and MSLP were constructed for
ERAS reanalysis, NWP models, and MLWP models for TCs over the NI Ocean basin for all the TCs at their peak
intensity (Figure 6). These composites correspond to the time when the TCs achieved maximum intensity. The
ERAS reanalysis and all models captured the closed isobaric structure of the MSLP pattern associated with TCs.
The central minimum pressure in ERAS is approximately 988 hPa, while that of the GFS model is 982 hPa. The
mean intensity of the TCs forecasted by the IFS and UM model is notably weaker, with a central minimum MSLP
of about 992 and 996 hPa respectively. The central minimum MSLP forecasted by the Aurora, GraphCast and

SAHU ET AL.

6 of 13

85U8017 SUOLILLIOD BAIER1D B|qedl|dde au Aq peusenob e sapiMe YO ‘@8N JO sa|ni Joj Areiq1T 8UIIUO 81 UO (SUORIPUOD-PUR-SWIS}WOD A8 1M AReq1BUTUO//SANY) SUORIPUOD PUe SWLB | 83U 885 *[5202/.0/72] Uo ArigiTauliuo A81im ‘(1va- NON) ADOTONHOIL 40 3LNLILSNI NVIANI A ¥65000HSZ02/620T 0T/I0PAL0D" A3|1m-Are.qjeutjuo'sandnBie//sdiy woy pepeojumoq ‘2 ‘5202 ‘0TZSE662



V od |
AGU

ADVANCING EARTH

AND SPACE SCIENCES

JGR: Machine Learning and Computation

10.1029/2025JH000594

30

20

10

-10

30

= N
o o

MSW Error (m/s)
o

-10

30

20

10

-10

Figure 5.

(a) NI

(c) WP

(e) AO

t+0 t+12 t+24 t+36 t+48 t+60 t+72 t+84 t+96

Lead Time

t+12 t+24 t+36 t+48 t+60 t+72 t+84 t+96

—— ERA5
IFS
— GFS

PanguWeather
FourCastNet v2

Maximum sustained wind speed error (m s_l) for various models across different ocean basins: (a) North Indian,

(b) South Indian, (c) Western North Pacific, (d) Eastern Pacific, and (e) Atlantic Ocean. The x-axis represents the forecast
lead time (7 + O to 7 + 96 hr), the line plot shows the mean, the marker represents the median, and the error bars indicate the
interquartile range (8020 percentile). Positive errors indicate model underestimation relative to observation, while negative
errors indicate overestimation.

3.0

Distance from Cyclone Center (°)

0.0

/

/4 7 /A

-

(g)FourCastNet v2

'
SN L/
\‘\. /L/
| 3!
oy IS\
A N
S| \
i
/
i o, .

'3'93.\ B

3.0 -3.0

Distance from Cyclone Center (°)

N
e

Wind Speed at 10m (m/s)

iy
[o2)

iy
(=]
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Figure 7. Storm-centered composite plots of divergence (10~ s~!, shading) and wind speed (>15 m/s, quiver) at 850 hPa
over the North Indian Ocean basin for (a) ERAS, (b) Integrated Forecasting System, (c) Global Forecast System, (d) Unified
Model, (e) GraphCast, (f) PanguWeather, (g) FourCastNet v2 and (h) Aurora. The blue shading shows convergence.

PanguWeather models is around 992 hPa, whereas the FourCastNetv2 model predicts a slightly weaker intensity
with a central minimum MSLP of 996 hPa.

The spatial patterns of 10 m wind speeds were consistent with the MSLP patterns, with the GFS model forecasting
stronger wind speeds compared to other models and ERAS5 reanalysis. A comparison of the forecasted MSW and
minimum MSLP with corresponding observations suggests that ERAS underestimated the intensity of TCs over
the NI Ocean (Figure S5 in Supporting Information S1). MSLP and 10 m wind speed composites for TCs in other
ocean basins also indicate that the GFS model outperformed ERAS and all other forecast models, except in the
Atlantic Ocean, where ERAS showed slightly stronger TCs (Figures S10-S13 in Supporting Information S1).
Further insight into the model performance can be obtained by directly comparing the geopotential with the
MSLP as the total air column pressure derived from the hydrostatic equation provides a robust validation of
surface pressure estimates (H.-Y. Liu et al., 2021). In Figures S14—18 in Supporting Information S1, geopotential
averaged at 850-200 hPa and MSLP are evaluated together for all the ocean basins. The underlying logic is that
the geopotential height is directly related to the mass distribution in the atmospheric column, and in a well-
resolved atmosphere, this should be consistent with the surface pressure and in all MLWP models there was a
close correspondence between the predicted MSLP and the spatial variations in geopotential. This consistency
indicates that the pressure fields, are accurately represented in the models, while they have underestimation
issues.

All forecast models, including the MLWP models, exhibit a clear negative slope in the MSLP-MSW scatter plots,
indicating that lower central pressures generally coincide with stronger surface winds (Figure S19 in Supporting
Information S1). This robust inverse relationship between MSLP and MSW is consistent across different ocean
basins (Bai et al., 2019; Carstens et al., 2024). Notably, the GFS forecasts tend to produce stronger wind speeds
than both ERAS reanalysis and the other forecast models, while ERAS consistently underestimates TC intensity in
most basins as shown in Figure 5. This shows the MLWP models reproduce the fundamental pressure—wind
coupling with high fidelity. Reanalysis data, often considered the ground truth in the absence of direct obser-
vations, serves as the training data set for MLWP models. These analyses strongly suggest that the large errors in
TC intensity predicted by the MLWP models stem from the underestimation of TC intensities in the training data.

Since most of the MLWP models do not provide vertical velocity explicitly, looking at low-level divergence/
convergence patterns can serve as a useful proxy for the strength of the vertical motion. Stronger inflow and
convergence in the boundary layer often imply more vigorous updrafts and, thus, a potentially deeper warm core
aloft (Willoughby, 1990). Figure 7 highlights intermodel differences in TC dynamics through horizontal wind
vectors and divergence within a 3° radius of the center. MLWP models, like Aurora, PanguWeather, and
Fourcastnet, resolve the convergence and divergence pattern in lower levels but underestimate the magnitudes. At
the same time, GraphCast shows the divergence pattern as very weak compared to convergence, and the GFS

SAHU ET AL.

8 of 13

85U8017 SUOLILLIOD BAIER1D B|qedl|dde au Aq peusenob e sapiMe YO ‘@8N JO sa|ni Joj Areiq1T 8UIIUO 81 UO (SUORIPUOD-PUR-SWIS}WOD A8 1M AReq1BUTUO//SANY) SUORIPUOD PUe SWLB | 83U 885 *[5202/.0/72] Uo ArigiTauliuo A81im ‘(1va- NON) ADOTONHOIL 40 3LNLILSNI NVIANI A ¥65000HSZ02/620T 0T/I0PAL0D" A3|1m-Are.qjeutjuo'sandnBie//sdiy woy pepeojumoq ‘2 ‘5202 ‘0TZSE662



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

JGR: Machine Learning and Computation 10.1029/2025JH000594

200 (a) ERAS (b) IF.S (c) GFS (d) UM

300
400
500
600 | 3
700
800

Y
h ' 1 1
r | 1 1

900 1 i | | I 1
1000 + + + +

(e) GraphCast (f) PanguWeather (g) FourCastNet v2 (h) Aurora
| | 4 T

200

300 ' _
400 : .

500 |
' -3

. 1

1

1 F

| |

1 1

1 1

. l

Pressure Level (hPa)
o

Temperature Anomaly (°C)

600
700
800

:
900 :
:

1
OOE)5.0 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 0.0 25 5.0

Distance from Cyclone Center (°)

Figure 8. Vertical cross-sections of the temperature anomalies (°C) over the North Indian Ocean basin for (a) ERAS5,
(b) Integrated Forecasting System, (c) Global Forecast System, (d) Unified Model, (¢) GraphCast, (f) PanguWeather,
(g) FourCastNet v2 and (h) Aurora. Shading represents composite temperature deviations, with red indicating positive
anomalies and blue indicating negative anomalies.

model shows strong convergence/divergence magnitude, but its pattern was not consistent across all ocean basins
(Figures S20-23 in Supporting Information S1). These discrepancies directly impact MSW and MSLP spread;
concentrated low-level convergence near the core corresponds to stronger updrafts, lower MSLP, and elevated
MSW, aligning with TC intensification. Thermal wind balance links warm-core intensity to convergence strength.
Weak convergence in models reduces warm-core magnitude, propagating errors to TC intensity.

Several recent studies have examined the skill of standalone ML models and global MLWP models in predicting
TC intensities. Yang et al. (2024) utilized a deep learning model trained on satellite images to predict extreme
rainfall associated with TCs, achieving an accuracy of 87% for TC rainfall intensity predictions within a 0—
120 min window. Errors in TC intensity within ERAS reduced when it was downscaled to high resolution using a
generative super-resolution model (Lockwood et al., 2024), indicating that ERAS's resolution may be inadequate
to capture the finer features of TCs. An evaluation of global MLWP models for the Eastern and Western North
Pacific basins also showed substantial underestimation of TC intensity when initialized with ERAS data (C. Liu
et al., 2024). Also, the double penalization effect inherent in the RMSE loss function of this MLWP models plays
a critical role in weak intensity biases (Subich et al., 2025). However, a hybrid ML-physics model, such as the
framework proposed by H.-Y. Liu et al. (2024), may further improve TC intensity prediction. This approach
integrates the Pangu-Weather model for large-scale circulation and TC track forecasting with the high-resolution
WRF model for simulating core physical processes. It also incorporates spectral nudging to refine large-scale
circulation and an ocean mixed-layer model to update sea surface temperatures. Such a hybrid framework has
been shown to enhance long-range TC forecasts by reducing track and intensity errors compared to standalone
MLWP models or traditional physics-based NWP models.

A key feature of TCs is their vertical thermal structure. It is important to examine whether the MLWP models can
capture the thermodynamic structure of TCs, as they did with TC dynamics. To this end, we computed the storm-
centered horizontal temperature anomalies from the temperature fields forecasted by the models and compared
them with those computed from ERAS5 reanalysis for the NI Ocean (Figure 8) and other ocean basins (Figures
S24-S27 in Supporting Information S1), following the method described in Section 2. All models successfully
captured the warm core structure, with positive temperature anomalies concentrated in the mid-troposphere
(roughly between 300 and 700 hPa). The pattern and magnitude of these warm core anomalies are consistent
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with the satellite-derived climatology of TC warm core anomalies (X. Wang & Jiang, 2019). However, substantial
inter-model variability in the magnitude and vertical extent of the warm core anomalies was observed.

The GFS model exhibited the strongest warm core, with temperature anomalies exceeding 4°C around 200—
500 hPa. ERAS also showed pronounced warm cores, with anomalies reaching approximately 3—4°C in the same
altitude range. The MLWP models, while displaying a distinct warm core, exhibited weaker temperature
anomalies of 2-3°C. This weaker warm core in the MLWP models aligns with the previous observation of lower
maximum wind speeds and higher central pressures, suggesting a less intense storm overall.

The vertical extent of the warm core also varied slightly among the models. In GFS forecasts, the warm anomaly
extended relatively high into the troposphere, reaching up to around 200-300 hPa. In contrast, the warm core in
the other models was more confined to the mid-troposphere. Additionally, a slight cold anomaly near the surface
(below 850 hPa) was evident. This surface cooling can be attributed to evaporative cooling from rainfall. The
more pronounced vorticity advection pattern in the GFS model indicates more vigorous vertical motions, leading
to a stronger warm core in that model. However, previous studies (Bonavita, 2024) have shown that MLWP
models tend to smooth out fine-scale atmospheric structures, leading to discrepancies in the representation of sub-
synoptic and mesoscale weather phenomena. Their forecasts exhibit notably different energy spectra compared to
both their training reanalysis fields and traditional NWP models, which can result in overly smooth predictions.
This smoothing effect may contribute to weaker intensity biases observed in MLWP models, as it dampens the
sharp temperature gradients and strong vorticity advection that drive cyclone intensification. Although the
MLWP models are not explicitly designed to capture the physics associated with weather systems, they
demonstrated an ability to do so, as evidenced by the consistency between their relatively weaker vorticity
advection and the thermodynamic structure of TCs.

The performance disparities in predicting dynamical and thermodynamical features across MLWP models stem
from differences in architectural design and training data heterogeneity. While GraphCast, PanguWeather, and
FourCastNetV2 rely solely on ERAS reanalysis data, Aurora employs a multimodal pretraining strategy on six
diverse weather and climate data sets: ERA5 reanalysis, CMCC climate simulations, IFS-HR high-resolution
forecasts, HRES operational forecasts, GFS analysis, and GFS forecasts. This composite data set exposes
Aurora to a broader spectrum of atmospheric regimes, temporal scales, and operational biases, enabling it to learn
generalizable representations of atmospheric dynamics (Bodnar et al., 2024). GraphCast's GNN excels at multi-
scale interactions critical for TC genesis and steering flows. However, it's fine-tuning on high-resolution HRES
operational forecasts may enhance its ability to capture small-scale atmospheric processes, particularly in high-
impact weather events, potentially explaining its improved performance compared to PanguWeather and Four-
CastNetV2 (Lam et al., 2023). PanguWeather's hierarchical transformer prioritizes medium-range stability
through temporal aggregation, while FourCastNetV2's Fourier Neural Operators (FNOs) enable rapid global
modeling but lack finer scale precision (Bi et al., 2023; Pathak et al., 2022). In contrast, Aurora's 3D Swin
Transformer architecture is pre-trained on standardized meteorological variables across heterogeneous data sets,
resolutions, and pressure levels, minimizing a composite loss function that harmonizes discrepancies between
forecast/analysis pairs and climate simulations. By assimilating operational forecast errors (e.g., GFS/HRES)
alongside reanalysis ground truths (ERAS5), Aurora likely internalizes correction mechanisms for convective
processes and thermodynamic couplings, explaining its superior skill in rapid intensification scenarios. Further
investigation is needed to disentangle how pretraining data diversity, particularly the inclusion of climate sim-
ulations (CMCC) and operational forecasts, complements architectural innovations to enhance robustness across
weather regimes.

4. Conclusions

Recent advancements in global MLWP models have demonstrated comparable or better forecast accuracy relative
to traditional physics-based NWP models. However, these MLWP models have not been rigorously tested for
their skill in predicting extreme weather phenomena, such as TCs, across global ocean basins. Furthermore,
questions remain about whether MLWP models capture the underlying physics of weather systems, as they are
not explicitly designed to do so.

In this study, we evaluated the skill of four MLWP models—GraphCast, PanguWeather, Aurora, and Four-
CastNet v2—against three NWP models, GFS, IFS and UM, in forecasting TCs globally. Our analysis revealed
that the MLWP models achieved high skill in predicting TC tracks, as evidenced by low track errors. However, all
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MLWP models exhibited a pronounced low-intensity bias in both maximum sustained wind speeds and minimum
MSLP. A comparison of TC intensities in ERAS reanalysis with observations revealed a similar low bias, sug-
gesting that errors in the training data likely contributed to the MLWP models' TC intensity prediction errors.
Addressing these data quality issues could substantially enhance the accuracy of TC intensity forecasts by MLWP
models. This study did not explore the impact of double penalization, a common issue in ML models, on TC
intensity forecast errors, presenting an avenue for future investigation.

We also investigated whether the MLWP models capture the physics of TCs. Despite being data-driven and not
explicitly designed to model physical processes, these models were able to reasonably predict the horizontal
structure of sea level pressure, low-level convergence, absolute vorticity, and vorticity advection. Additionally,
they captured the vertical structure of warm-core anomalies associated with TCs. The consistency in magnitude
between various physical fields in the MLWP models suggests that they intuitively learned the interrelationships
among different physical fields during the evolution of weather systems. Among MLWP models, Aurora out-
performed other three MLWP models in capturing TC physics. This advantage likely stems from the Aurora's
training on variety of data sets.

Our results highlight the promise of MLWP models in forecasting extreme weather events, such as TCs, and
underscore the need for improved training data sets. Incorporating higher-quality training data or coupling
physics-based principles with deep learning models could further enhance the predictive capabilities of MLWP
models, particularly for extreme weather events.

Data Availability Statement

The IBTrACS-WMO v4 data set is available from Gahtan et al. (2024). The TIGGE data set is available from
Bougeault et al. (2010). ERAS hourly data are available at Hersbach et al. (2023). The MLWP forecasts are
produced using the ai-models toolbox developed by ECMWEF (Raoult et al., 2024). All plots are produced using
Matplotlib (Hunter, 2007). All TC track data used in this study are available publicly at Sahu and Sandeep (2025).
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